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Fig. 3.2 Core picces fitted together on a length of angle-iron. A rubbly section is contained in the bag. The parallel lines marked
on the core, which would be in contrasting colours, indicate the way up.

in si-tu

in the natural or original position or place
Pronunciation: (")in-'sl-(")td, -'si-, -(")tyu also
-'sE-, -(")chu

Function: adverb or adjective

Etymology: Latin, in position

Date: 1740




Georuysics AT WORK
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Many geophysical methods are used in attempting to determine the attitude, char-
acter, and contents of rocks beneath the surface. These sketches show men busy at
some of those in common use.
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Fig. 1.1 Logging tools in the wellbore.
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Figure 7.4 Schematic of a scintillation counter. An incident gamma ray on the scin-
tillation crystal of Nal causes the crystal to emit a photon, which then causes the photo-
electrode to emit electrons. The number of electrons is multiplied as each strikes a series
of electrodes, finally being collected by an anode where the consequent current is
proportional to the energy of the incident gamma ray.

* Gamma ray = shale indicator
e Gamma ray log
GR(API) = 4Th(ppm) + 8U(ppm)
+ 16K (%)
* Compensated gamma ray
CGR(API) = 4Th(ppm) +
16K (%)
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Fig. 3-9—Potassium, thorium, and uranium response curves (Nal crystal detector).
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Figure 7.4 Schematic of a scintillation counter. An incident gamma ray on the scin-
tillation crystal of Nal causes the crystal to emit a photon, which then causes the photo-
electrode to emit electrons. The number of electrons is multiplied as each strikes a series
of electrodes, finally being collected by an anode where the consequent current is

proportional to the energy of the incident gamma ray.

Long spacing
detector

Short spacing

detector
R

Source
\-..___

7y I

a

ARRRALLE

[}

)
A L,
L nry
B

-

LWL *
Do fads
Y e
N

¥

%

Electron density index p, = 2—pp,

=7
]

L
o
*

wmat
Eelonhy
A

-
N LN e

FALY
e,

Mudcake



Fast/slow n

[ Elastic-neutron scattering.

Neutron
porosity

Fast n

Excited

Prompt vy

Ground State§
Nucleus
(ZA)

[ Inelastic-neutron scattering.

Fast n Slow n

Capture
spectroscopy

Excited
Nuclet

Prompt ~
»

Prompt 7
Unstable
d State

Unstable
G

Delayed 4

Ground State
leus

[ Thermal neutron capture (first two steps) and
activation (second step on).

[ Fast-neutron particle reaction.

Fast n sources:
- 24| Am-?Be (4.35 MeV)
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Thermal n energy = 0.025eV
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Figure 1 The slowing-down length of three commaon rock types as a function of porosity,
From Elis (36).
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Fig. 5. Neutron and density log estimates of | Sy

porosity (dy,, thermal neutrons; ¢, €pi- Porosity
thermal neutrons; ¢y, density). Agreement
between the three i1s seen in a sandstone
layer, which contains no clay minerals. In
the shale zones above and below, the neu-
tron estimates exceed the density estimate
because of the high H concentration associ-
ated with the clay minerals. [Adapted from

(11)]
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Bulk modulus K relates
compressional stress and

strain
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Shear modulus u relates
shear stress and strain

Shear (S) waves




Incrdent
wave

TRANSMITTER

BOREHOLE FORMATION
(MUD)

/

wrs //l

<
<

ALL SIGNALS IN

MUD COLUMN ARE
TUBE ) COMPRESSIONAL

AN

(P) WAVES

b8

£ 1{0/ VS/
P2 Ve2 Vsz
Vp2
Ver
Vsa .
W X Refracted
[ .
compressional
Refracfed ) wave
shear .- RECEIVER
wave--
/nc. .
i
wave F1G. 10-2. Propagation paths foru
the P, S-, mud-, and tube-waves.
Interface Their arrival at the receiver is
a function of time, and is shown
"/?F in Figure 10-3.
Rs f Compressional wave
Shear wave
Equivalent ray diagraim Second /(
arrival---— Slope i
FIGURE 2-14 fime v
Refraction of plane compressional wave across interface. 7 -
First
arrival
< ; time
3 lope =
A
Xerit  Xcros x

Y

j— - ——N —— >

Y




Sound Wave Propagation

Wellbore Wellbore
f

ead wave

. Sonic Waveforms ,
Compressional Shear Compressional Shear  Flexural
wave wave Fluid wave Compressional wave Fluid wave wave wave wave
| " : ' '
—TAMW\/\JVVVMM{,V\IN\MW %MW%A/M/V/\/WW WV

' v/
1 ,\/X/\
'v
1
'
| | / /
/ ;AvAv"v
e / j ’ ’\/X/‘

'—"'VWMMVNV\“/V’VW\N\/'V‘WVVWVVW
| MM” A At ! i ’Ix

i r
; | Il , i ]
/ i "VV“"V“‘“"“‘“‘V' ‘\NV\ ‘,’/\/\/F
| I / ! o ! v
’ YV
’\:

“Fast” formation “Slow” formation “Slow” formation



Wyllie’s time-average

Slowness 1 = 1/Vp
u=01—-@)ug+ puy

Vr/Vs and lithology

4{]-
e, . DOlOMte
60
a
=
9 Sandstone
Water
oo R 1.3[
Sandstone =~ ~ergeT N7
s TR
100 I 1 1 . . 1 TR
80 100 120 140 160

Atshear 138286



Nuclear Logs
Sonic
Electrical / magnetic
— Resistivity

* Electrode devices

* Induction
— Magnetic susceptibility
Imaging
Vertical seismic profile (VSP)
Logging While Drilling
Examples



Electrical properties

Ohm’s law
V = IR"
< L e
ReS|s.,ta.nf:e R RF_RZ
Resistivity R A

Units of resistivity are £2:m (ohm-m)
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Fig. 1-1—The first log: points plotted on graph paper by Henri
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Fic. 24. The basic two-coil induction sonde. Transmitter 7" and receiver R, separated by a
distance L, are wound on an insulating mandrel. 7 produces an eddy current in a loop of unit
cross-sectional area in the formation. This in turn induces in R an emf which is proportional to
the conductivity of the material in the loop. [Adapted from H. G. Doll, Pet. Trans. AIME 186,
148 (1949). Copyright 1949 SPE - AIME.]
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The Borehole Televiewer 255

are presented as a continuous record. Features
are easily followed throughout any interval of the
borehole.

TOOL DESCRIPTION

A schematic of the televiewer logeing tool is
shown in Figure 1, High frequency sound (about
2 megahertz) from an acoustic transducer, pulsed
at a rate of about 2000 times a second, is used to
survey the borehole walls. A flux-gate magnetom-
cter senses the earth’s magnetic ficld and provides
orientation information in open hole, A motor

rotates the transducer and flux-gate magnetom-
eter within the tool about three times a second.

Although the transducer has a diameter of only
a hali-inch, the sound emitted is confined to a very
narrow beam because of the high operating fre-
quency, Pulses of sound are directed toward the
borehole wall where a portion of each pulse is
reflected back toward the transducer. The trans-
ducer converts the reflected sound pulses into
electrical signals; these are utilized at the surface
for producing the televiewer log. The combina-
tion of transducer rotation with a continuous

FLUX - GATE \
T
MAGNETOME TER

PIEZOELECTRIC
TRANSDUCER

Fig. 1. Schematic layout of televiewer showing scanning acoustic transducer,
magnetic north sensing magnetomeler, and driving motor,

—— Compensating device

Motor assembly

Gear box assembly
Rotating electrical

connection

Centralizer

Rotating shaft with
built-in electronics

Rotating seal

__— Transducer

- Interchangeable
rotating sub

~7.51ps
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Figure F45. Downhole gamma radiation and resistivity logs from Holes 1207B and 1213B
illustrating the form and setting of the Aptian Oceanic Anoxic Event (OAEla) black shale.
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Figure 14, Correlation of the Hole T98B SGR gamma-ray log with the marine
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Figure 5. Plot of the temporal resolution of several logging tools as a function
of sedimentation rate. Temporal resolution was calculated as vertical aper-
ture/sedimentation rate. Minimum sedimentation rates required to resolve 100
ky., 4] ky., and 23-19 kyy. in time are shown as shaded columns. Note that
these sedimentation rates are only sufficient to resolve a time interval (At)
equivalent to 100 ky., 41 k.y., and 20 k.y.
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Figure 3. Interpreted multichannel seismic profile 10 (see Fig. 2 for location) extending across the Eratosthenes Seamount, illustrating the thick accumulations
of Neogene and Paleogene sediments in the adjacent basin. The drill sites are projected onto the profile. Note that the seamount comprises mainly Cretaceous
and older strata.
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Figure 63. Hole 967E Quad combination tool and FMS (4-arm) caliper results. : - g
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Figure 18. Example of a 4-m-thick layer with high sulfur/
calcium and low chlorine/hydrogen ratios from the geochemi-
cal log, identifying it primarily as gypsum in ODP Hole 967C in
the eastern Mediterranean Sea [from Emeis ef al., 1996]. The
logs provided critical data in identifying this early basin deposit
that was not recovered during coring operations.
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Figure 15. FMS image of the ~5-m-thick gypsum layer overlying upper
Eocene foraminiferal nannofossil chalk. This erosional unconformity is quite

irregular on a small spatial scale.




